Change Password

Please enter the password.
Please enter the password. Between 8-64 characters. Not identical to your email address. Contain at least 3 of: uppercase, lowercase, numbers, and special characters.
Please enter the password.
Submit

Change Nickname

Current Nickname:
Submit

Apply New License

License Detail

Please complete this required field.

  • Ultipa Blaze (v4)
  • Ultipa Powerhouse (v5)

Standalone

learn more about the four main severs in the architecture of Ultipa Powerhouse (v5) , click

here

Please complete this required field.

Please complete this required field.

Please complete this required field.

Please complete this required field.

Leave it blank if an HDC service is not required.

Please complete this required field.

Leave it blank if an HDC service is not required.

Please complete this required field.

Please complete this required field.

Mac addresses of all servers, separated by line break or comma.

Please complete this required field.

Please complete this required field.

Cancel
Apply
ID
Product
Status
Cores
Maximum Shard Services
Maximum Total Cores for Shard Service
Maximum HDC Services
Maximum Total Cores for HDC Service
Applied Validity Period(days)
Effective Date
Expired Date
Mac Address
Reason for Application
Review Comment
Close
Profile
  • Full Name:
  • Phone:
  • Company:
  • Company Email:
Change Password
Apply

You have no license application record.

Apply
Certificate Issued at Valid until Serial No. File
Serial No. Valid until File

Not having one? Apply now! >>>

Product Created On ID Amount (USD) Invoice
Product Created On ID Amount (USD) Invoice

No Invoice

v5.2
Search
    English
    v5.2

      k-Truss

      HDC

      Overview

      The k-Truss algorithm identifies the largest cohesive subgraph, called a truss in the graph. It is widely used in fields such as social networks, biology, and transportation. By revealing communities or clusters of closely related nodes, it helps uncover the structure and connectivity of complex networks.

      The concept of k-Truss was originally defined by J. Cohen in 2005:

      Concepts

      k-Truss

      The truss is motivated by a natural observation of social cohesion: if two people are strongly tied, it is likely that they also share ties to others. A k-Truss is thus defined in this way: a tie between A and B is considered legitimate only if it is supported by at least k–2 other people who are each tied to both A and B. In other words, each edge in a k-truss connects two nodes that have at least k–2 common neighbors.

      Formally,a k-truss is a maximal subgraph in which every edge is supported by at least k–2 triangles that include that edge.

      In the graph below, the 3-Truss and 4-Truss are highlighted in red. The graph does not contain any truss with k equal to or greater than 5.

      Ultipa's k-Truss algorithm identifies the maximal truss in each connected component.

      Considerations

      • At least 3 nodes are contained in a truss (when k≥3).
      • In a complex graph with multiple edges between two nodes, triangles in a truss are counted based on edges. Refer to the Triangle Counting algorithm for additional context.
      • The k-Truss algorithm treats all edges as undirected, ignoring their original direction.

      Example Graph

      Run the following statements on an empty graph to define its structure and insert data:

      INSERT (a:default {_id: "a"}),
             (b:default {_id: "b"}),
             (c:default {_id: "c"}),
             (d:default {_id: "d"}),
             (e:default {_id: "e"}),
             (f:default {_id: "f"}),
             (g:default {_id: "g"}),
             (h:default {_id: "h"}),
             (i:default {_id: "i"}),
             (j:default {_id: "j"}),
             (k:default {_id: "k"}),
             (l:default {_id: "l"}),
             (m:default {_id: "m"}),       
             (b)-[:default]->(a),
             (d)-[:default]->(a),
             (c)-[:default]->(a),
             (d)-[:default]->(c),
             (f)-[:default]->(a),
             (f)-[:default]->(d),
             (d)-[:default]->(f),
             (f)-[:default]->(d),
             (d)-[:default]->(e),
             (e)-[:default]->(f),
             (f)-[:default]->(c),
             (c)-[:default]->(h),
             (i)-[:default]->(m),
             (i)-[:default]->(g),
             (k)-[:default]->(c),
             (k)-[:default]->(c),
             (k)-[:default]->(f),
             (j)-[:default]->(l),
             (k)-[:default]->(l),
             (g)-[:default]->(k),
             (m)-[:default]->(k),
             (l)-[:default]->(f),
             (m)-[:default]->(f),
             (f)-[:default]->(g),
             (g)-[:default]->(m),
             (m)-[:default]->(l);
      

      insert().into(@default).nodes([{_id:"a"}, {_id:"b"}, {_id:"c"}, {_id:"d"}, {_id:"e"}, {_id:"f"}, {_id:"g"}, {_id:"h"}, {_id:"i"}, {_id:"j"}, {_id:"k"}, {_id:"l"}, {_id:"m"}]);
      insert().into(@default).edges([{_from:"b", _to:"a"}, {_from:"d", _to:"a"}, {_from:"c", _to:"a"}, {_from:"d", _to:"c"}, {_from:"f", _to:"a"}, {_from:"f", _to:"d"}, {_from:"d", _to:"f"}, {_from:"f", _to:"d"}, {_from:"d", _to:"e"}, {_from:"e", _to:"f"}, {_from:"f", _to:"c"}, {_from:"c", _to:"h"}, {_from:"i", _to:"m"}, {_from:"i", _to:"g"}, {_from:"k", _to:"c"}, {_from:"k", _to:"c"}, {_from:"k", _to:"f"}, {_from:"j", _to:"l"}, {_from:"k", _to:"l"}, {_from:"g", _to:"k"}, {_from:"m", _to:"k"}, {_from:"l", _to:"f"}, {_from:"m", _to:"f"}, {_from:"f", _to:"g"}, {_from:"g", _to:"m"}, {_from:"m", _to:"l"}]);
      

      Creating HDC Graph

      To load the entire graph to the HDC server hdc-server-1 as my_hdc_graph:

      CREATE HDC GRAPH my_hdc_graph ON "hdc-server-1" OPTIONS {
        nodes: {"*": ["*"]},
        edges: {"*": ["*"]},
        direction: "undirected",
        load_id: true,
        update: "static"
      }
      

      hdc.graph.create("my_hdc_graph", {
        nodes: {"*": ["*"]},
        edges: {"*": ["*"]},
        direction: "undirected",
        load_id: true,
        update: "static"
      }).to("hdc-server-1")
      

      Parameters

      Algorithm name: k_truss

      Name
      Type
      Spec
      Default
      Optional
      Description
      k Integer ≥1 / No Each edge in the k-truss subgraph must be part of at least k-2 triangles.
      return_id_uuid String uuid, id, both uuid Yes Includes _uuid, _id, or both to represent nodes in the results. Edges can only be represented by _uuid; this option is only valid in File Writeback.

      File Writeback

      CALL algo.k_truss.write("my_hdc_graph", {
        k: 4,
        return_id_uuid: "id"
      }, {
        file: {
          filename: "4truss"
        }
      })
      

      algo(k_truss).params({
        projection: "my_hdc_graph",
        k: 4,
        return_id_uuid: "id"  
      }).write({
        file: {
          filename: "4truss"
        }
      })
      

      Result:

      _id
      e--[110]--f
      k--[117]--f
      k--[119]--l
      m--[121]--k
      m--[123]--f
      m--[126]--l
      c--[103]--a
      g--[120]--k
      g--[125]--m
      d--[102]--a
      d--[104]--c
      d--[107]--f
      d--[109]--e
      f--[105]--a
      f--[106]--d
      f--[108]--d
      f--[111]--c
      f--[124]--g
      l--[122]--f
      

      Full Return

      CALL algo.k_truss.run("my_hdc_graph", {
        k: 5
      }) YIELD truss
      RETURN truss
      

      exec{
        algo(k_truss).params({
          k: 5
        }) as truss
        return truss
      } on my_hdc_graph
      

      Result:

      Stream Return

      CALL algo.k_truss.stream("my_hdc_graph", {
        k: 5
      }) YIELD truss5
      FOR node IN pnodes(truss5)
      RETURN collect_list(node._id)
      

      exec{
        algo(k_truss).params({
          k: 5
        }).stream() as truss5
       uncollect pnodes(truss5) as node
       return collect(node._id)
      } on my_hdc_graph
      

      ["d","a","d","c","d","f","d","e","f","a","f","d","f","d","f","c","e","f"]
      
      Please complete the following information to download this book
      *
      公司名称不能为空
      *
      公司邮箱必须填写
      *
      你的名字必须填写
      *
      你的电话必须填写
      Privacy Policy
      Please agree to continue.

      Copyright © 2019-2025 Ultipa Inc. – All Rights Reserved   |  Security   |  Legal Notices   |  Web Use Notices