Change Password

Please enter the password.
Please enter the password. Between 8-64 characters. Not identical to your email address. Contain at least 3 of: uppercase, lowercase, numbers, and special characters.
Please enter the password.
Submit

Change Nickname

Current Nickname:
Submit

Apply New License

License Detail

Please complete this required field.

  • Ultipa Graph V4

Standalone

Please complete this required field.

Please complete this required field.

The MAC address of the server you want to deploy.

Please complete this required field.

Please complete this required field.

Cancel
Apply
ID
Product
Status
Cores
Applied Validity Period(days)
Effective Date
Excpired Date
Mac Address
Apply Comment
Review Comment
Close
Profile
  • Full Name:
  • Phone:
  • Company:
  • Company Email:
  • Country:
  • Language:
Change Password
Apply

You have no license application record.

Apply
Certificate Issued at Valid until Serial No. File
Serial No. Valid until File

Not having one? Apply now! >>>

Product Created On ID Amount (USD) Invoice
Product Created On ID Amount (USD) Invoice

No Invoice

v5.0
Search
    English
    v5.0

      Louvain

      ✓ File Writeback ✓ Property Writeback ✓ Direct Return ✓ Stream Return ✓ Stats

      Overview

      The Louvain algorithm is a widely recognized and extensively used algorithm for community detection in graphs. It is named after the location of its authors - Vincent D. Blondel et al. from Université catholique de Louvain in Belgium. The primary objective of the algorithm is to maximize the modularity of the graph, and it has gained popularity due to its high efficiency and the quality of its results.

      Concepts

      Modularity

      In many networks, nodes tend to naturally form groups or communities, characterized by dense connections within a community and relatively sparse connections between communities.

      Consider an equivalent network G' to G, where G' remains the same community partition and the same number of edges as in G, but the edges are placed randomly. If G exhibits a good community structure, the ratio of intra-community edges to the total number of edges in G should be higher than the expected ratio in G'. A larger disparity between the actual ratio and the expected value indicates a more pronounced presence of a community structure in G. This forms the original concept of modularity. The modularity is one of the widely used methods to evaluate the quality of a community partition, the Louvain algorithm is designed to find partitions that maximize the modularity.

      The modularity ranges from -1 to 1. A value close to 1 indicates a stronger community structure, while negative values suggest that the partition is not meaningful. For a connected graph, the modularity value ranges from -0.5 to 1.

      Considering the weights of edges in the graph, the modularity (Q) is defined as

      where,

      • m is the total sum of edge weights in the graph;
      • Aij is the sum of edge weights between nodes i and j, and 2m = ∑ijAij;
      • ki is the sum of weights of all edges attached to node i;
      • Ci represents the community to which node iis assigned, δ(Ci,Cj) is 1 if Ci= Cj, and 0 otherwise.

      Note, kikj2m is the expected sum of weights of edges between nodes i and j if edges are placed at random. Both Aij and kikj2m are divided by 2m because each pair of distinct nodes in a community is considered twice, such as Aab = Aba, kakb2m = kbka2m.

      We can also write the above formula as the following:

      where,

      • inc is the sum of weights of edges inside community C, i.e., the intra-community weight;
      • totc is the sum of weights of edges incident to nodes in community C, i.e, the total-community weight;
      • m has the same meaning as above, and 2m = ∑ctotc.

      Nodes in this graph are assigned into 3 communities, take community C1 as example:

      • inC1 = Aaa + Aab + Aac + Aad + Aba + Aca + Ada = 1.5 + 1 + 0.5 + 3 + 1 + 0.5 + 3 = 10.5
      • (totC1)2 = kaka + kakb + kakc + kakd + kbka + kbkb + kbkc + kbkd + kcka + kckb + kckc + kckd + kdka + kdkb + kdkc + kdkd + = (ka + kb + kc + kd)2 = (6 + 2.7 + 2.8 + 3)2 = 14.52

      Louvain

      The Louvain algorithm starts from a singleton partition, in which each node is in its own community. Then algorithm iteratively runs through passes, and each pass is made of two phases.

      First Phase: Modularity Optimization

      For each node i, consider its neighbors j of i, compute the gain of modularity (ΔQ) that would take place by reassigning i from its current community to the community of j.

      Node i is then placed in the community that offers the maximum ΔQ, but only if ΔQ is greater than a predefined positive threshold. If no such gain is possible, node i stays in its original community.

      Take the above graph as example, nodes in the same community are denoted in the same color. If now considers node d, the respective gains of modularity of moving it to the community {a,b}, {c}, and {e,f} are:

      • ΔQd→{a,b} = Q{a,b,d} - (Q{a,b} + Q{d}) = 52/900
      • ΔQd→{c} = Q{c,d} - (Q{c} + Q{d}) = 72/900
      • ΔQd→{e,f} = Q{d,e,f} - (Q{e,f} + Q{d}) = 36/900

      If ΔQd→{c} is greater than the predefined threshold of ΔQ, node d will be moved to community {c}, otherwise it stays in its original community.

      This process is sequentially applied for all nodes and repeated until no individual move can improve the modularity or the maximum loop number is reached, completing the first phase.

      Second Phase: Community Aggregation

      In the second phase, each community is aggregated into a node, each aggregated node has a self-loop with weight corresponds to the intra-community weight. The weights of edges between these new nodes are given by the sum of weights of the edges between nodes in the corresponding two communities.

      Community aggregation reduces the number of nodes and edges in the graph without altering the weight of the local or the entire graph. After compression, nodes within a community are treated as a whole, but they are no longer isolated for modularity optimization, achieving a hierarchical (iterative) community division effect.

      Once this second phase is completed, another pass is applied to the aggregate graph. The passes are iterated until there are no more changes, and a maximum modularity is attained.

      Considerations

      • If node i has any self-loop, when calculating ki, the weight of self-loop is counted only once.
      • The Louvain algorithm ignores the direction of edges but calculates them as undirected edges.
      • The output of the Louvain algorithm may vary with each execution, depending on the order in which the nodes are considered. However, it does not have a significant influence on the modularity that is obtained.

      Syntax

      • Command: algo(louvain)
      • Parameters:
      Name
      Type
      Spec
      Default
      Optional
      Description
      phase1_loop_num int ≥1 5 Yes The maximum loop number of the first phase during each pass
      min_modularity_increase float [0,1] 0.01 Yes The minimum gain of modularity (ΔQ) to move a node to another community
      edge_schema_property []@<schema>?.<property> Numeric type, must LTE / Yes Edge properties to use as weights, where the values of multiple properties are summed up; all edge weights are considered as 1 if not set
      limit int ≥-1 -1 Yes Number of results to return, -1 to return all results
      order string asc, desc / Yes Sort communities by the number of nodes in it (only valid in mode 2 of the stream() execution)

      Examples

      The example graph is as follows:

      File Writeback

      Spec Content Description
      filename_community_id _id,community_id Node and its community ID
      filename_ids community_id,_id,_id,... Community ID and the ID of nodes in it
      filename_num community_id,count Community ID and the number of nodes in it
      algo(louvain).params({ 
        phase1_loop_num: 5, 
        min_modularity_increase: 0.1,
        edge_schema_property: 'weight'
      }).write({
        file:{
          filename_community_id: 'communityID',
          filename_ids: 'ids',
          filename_num: 'num'
        }
      })
      

      Statistics: community_count = 4, modularity = 0.464280
      Results: Files communityID, ids, num

      M,2
      N,2
      K,2
      L,2
      J,8
      I,8
      G,13
      H,8
      F,8
      C,12
      E,12
      D,12
      A,12
      B,13
      

      8,J,I,H,F,
      12,C,E,D,A,
      2,M,N,K,L,
      13,G,B,
      

      8,4
      12,4
      2,4
      13,2
      

      Property Writeback

      Spec Content Write to Data Type
      property community_id Node property uint32
      algo(louvain).params({ 
        phase1_loop_num: 5, 
        min_modularity_increase: 0.1,
        edge_schema_property: 'weight'
      }).write({
        db:{
          property: 'communityID'
        }
      })
      

      Statistics: community_count = 4, modularity = 0.464280
      Results: The community ID of each node is written to a new property named communityID

      Direct Return

      Alias Ordinal
      Type
      Description
      Columns
      0 []perNode Node and its community ID _uuid, community_id
      1 KV Number of communities, modularity community_count, modularity
      algo(louvain).params({ 
        phase1_loop_num: 6, 
        min_modularity_increase: 0.5,
        edge_schema_property: 'weight'
      }) as results, stats
      return results, stats
      

      Results: results and stats

      _uuid community_id
      13 2
      14 2
      11 2
      12 2
      10 8
      9 8
      7 13
      8 8
      6 8
      3 12
      5 12
      4 12
      1 12
      2 13
      community_count modularity
      4 0.46428

      Stream Return

      Spec Content Alias Ordinal Type Description Columns
      mode 1 or if not set 0 []perNode Node and its community ID _uuid, community_id
      2 []perCommunity Community and the number of nodes in it community_id, count
      algo(louvain).params({ 
        phase1_loop_num: 6, 
        min_modularity_increase: 0.5,
        edge_schema_property: 'weight'
      }).stream() as results
      group by results.community_id
      return table(results.community_id, max(results._uuid))
      

      Results: table(results.community_id, max(results._uuid))

      results.community_id max(results._uuid)
      12 5
      13 7
      2 14
      8 10
      algo(louvain).params({ 
        phase1_loop_num: 5, 
        min_modularity_increase: 0.1,
        order: "desc"
      }).stream({
        mode: 2
      }) as results
      return results
      

      Results: results

      community_id count
      8 4
      12 4
      2 4
      13 2

      Stats Return

      Alias Ordinal
      Type
      Description Columns
      0 KV Number of communities, modularity community_count, modularity
      algo(louvain).params({ 
        phase1_loop_num: 5, 
        min_modularity_increase: 0.1
      }).stats() as stats
      return stats
      

      Results: stats

      community_count modularity
      4 0.397778

      Algorithm Efficiency

      The Louvain algorithm achieves lower time complexity than previous community detection algorithms through its improved greedy optimization, which is usually regarded as O(N*logN), where N is the number of nodes in the graph, and the result is more intuitive. For instance, in a graph with 10,000 nodes, the complexity of the Louvain algorithm is around O(40000); in a connected graph with 100 million nodes, the algorithm complexity is around O(800000000).

      However, upon closer inspection of the algorithm process breakdown, we can see that the complexity of the Louvain algorithm depends not only on the number of nodes but also on the number of edges. Roughly speaking, it can be approximated as O(N * E/N) = O(E), where E is the number of edges in the graph. This is because the dominant algorithm logic of Louvain is to calculate the weights of edges attached to each node.

      The table below shows the performance of the community detection algorithms of Clauset, Newman and Moore, of Pons and Latapy, of Wakita and Tsurumi, and Louvain, in networks of various sizes. For each algorithm/network, it gives the modularity that is gained and the computation time. Empty record indicates a computation time that is over 24 hours. It clearly demonstrates that Louvain achieves a significant (exponential) increase in both modularity and efficiency.

      The choice of system architecture and programming language can significantly impact the efficiency and final results of the Louvain algorithm. For example, a serial implementation of the Louvain algorithm in Python may result in hours of computation time for small graphs with around 10,000 nodes. Additionally, the data structure used can influence performance, as the algorithm frequently calculates node degrees and edge weights.

      The native Louvain algorithm adopts C++, but it is a serial implementation. The time consumption can be reduced by using parallel computation as much as possible, thereby improving the efficiency of the algorithm.

      For medium-sized graphset with tens of millions of nodes and edges, Ultipa's Louvain algorithm can be completed literally in real time. For large graphs with over 100 million nodes and edges, it can be implemented in seconds to minutes. Furthermore, the efficiency of the Louvain algorithm can be affected by other factors, such as whether data is written back to the database property or disk file. These operations can impact the overall computation time of the algorithm.

      This is the records of the modularity and execution time of the Louvain algorithm running on a graph with 5 million nodes and 100 million edges. The computation process takes approximately 1 minute, and additional operations, such as writing back to the database or generating a disk file, add around 1 minute to the total execution time.

      Please complete the following information to download this book
      *
      公司名称不能为空
      *
      公司邮箱必须填写
      *
      你的名字必须填写
      *
      你的电话必须填写