Change Password

Please enter the password.
Please enter the password. Between 8-64 characters. Not identical to your email address. Contain at least 3 of: uppercase, lowercase, numbers, and special characters.
Please enter the password.
Submit

Change Nickname

Current Nickname:
Submit

Apply New License

License Detail

Please complete this required field.

  • Ultipa Graph V4

Standalone

Please complete this required field.

Please complete this required field.

The MAC address of the server you want to deploy.

Please complete this required field.

Please complete this required field.

Cancel
Apply
ID
Product
Status
Cores
Applied Validity Period(days)
Effective Date
Excpired Date
Mac Address
Apply Comment
Review Comment
Close
Profile
  • Full Name:
  • Phone:
  • Company:
  • Company Email:
  • Country:
  • Language:
Change Password
Apply

You have no license application record.

Apply
Certificate Issued at Valid until Serial No. File
Serial No. Valid until File

Not having one? Apply now! >>>

Product Created On ID Amount (USD) Invoice
Product Created On ID Amount (USD) Invoice

No Invoice

Search

      Spark Connector

      Overview

      Ultipa Spark Connector provides integration between Ultipa and Apache Spark through Ultipa Java SDK, facilitating the reading or writing of data from and to Ultipa within the Spark environment.

      Built on the latest Spark DataSource API, Ultipa Spark Connector supports different languages for interacting with Spark, including Scala, Python, Java, and R. The examples provided in this manual are written in Scala; minor syntax adjustments may be required for other languages.

      Installation

      Prerequisites

      Before installing the Ultipa Spark Connector, ensure you have the right versions of Ultipa and Spark:

      • Ultipa v4.x (v4.3 and above), whether run as a single instance, or as a cluster
      • Spark 2.4.8 with Scala 2.12

      Import Dependency

      To import the dependency of the Ultipa Spark Connector, add the following code to your pom.xml file:

      <dependencies>
        <dependency>
          <groupId>com.ultipa</groupId>
          <artifactId>ultipa-spark-connector</artifactId>
          <version>1.0.0</version>
        </dependency>
      </dependencies>
      

      Reading

      You can read data from Ultipa into a Spark DataFrame by a node schema, an edge schema or a UQL query statement.

      Spark does not support all property data types in Ultipa. Refer to the Data Type Conversion table for details.

      Read by Node Schema

      Retrieve _id and all custom properties of nodes belonging to the specified schema.

      Example: Read all nodes in the graphset Test with the schema Person

      import org.apache.spark.sql.{SaveMode, SparkSession}
      
      val spark = SparkSession.builder().getOrCreate()
      
      val df = spark.read.format("com.ultipa.spark.DataSource")
        .option("hosts","192.168.1.56:63940,192.168.1.57:63940,192.168.1.58:63940")
        .option("auth.username","root")
        .option("auth.password","root")
        .option("graph","Test")
        .option("nodes","Person")
        .load()
      
      df.show()
      

      Result:

      _id name gender
      U001 Alice female
      U002 Bruce male
      U003 Joe male

      Read by Edge Schema

      Retrieve _from, _to and all custom properties of edges belonging to the specified schema.

      Example: Read all edges in the graphset Test with the schema Follows

      import org.apache.spark.sql.{SaveMode, SparkSession}
      
      val spark = SparkSession.builder().getOrCreate()
      
      val df = spark.read.format("com.ultipa.spark.DataSource")
        .option("hosts","192.168.1.56:63940,192.168.1.57:63940,192.168.1.58:63940")
        .option("auth.username","root")
        .option("auth.password","root")
        .option("graph","Test")
        .option("edges","Follows")
        .load()
      
      df.show()
      

      Result:

      _from _to
      since
      level
      U001 U002 2019-12-15 12:10:09 1
      U003 U001 2021-1-20 09:15:02 2

      Read by UQL

      Retrieve data using a UQL query statement. The UQL query for reading must contain the RETURN clause, and you can return data with the type of ATTR or TABLE. Other types such as NODE, EDGE and PATH are not supported. Learn more about the types of returned data

      Example: Read data in the graphset Test returned by a UQL statement

      import org.apache.spark.sql.{SaveMode, SparkSession}
      
      val spark = SparkSession.builder().getOrCreate()
      
      val df = spark.read.format("com.ultipa.spark.DataSource")
        .option("hosts","192.168.1.56:63940,192.168.1.57:63940,192.168.1.58:63940")
        .option("auth.username","root")
        .option("auth.password","root")
        .option("graph","Test")
        .option("query","find().nodes() as n return n.name, n.gender")
        .load()
      
      df.show()
      

      Result:

      n.name n.gender
      Alice female
      Bruce male
      Joe male

      Writing

      You can write a Spark DataFrame into Ultipa as either nodes or edges belonging to a single schema. Each column within the DataFrame will be mapped as a property of the nodes or edges, with the column name serving as the property name (except for the _id of nodes, and the _from/_to of edges). Non-existent properties will be created during the writing process.

      The data type of each property is determined by the data type of the corresponding column within the DataFrame. Refer to the Data Type Conversion table for details.

      Write by Node Schema

      Example: Write a DataFrame to the Person nodes in the graphset Test

      import org.apache.spark.sql.{SaveMode, SparkSession}
      
      val spark = SparkSession.builder().getOrCreate()
      
      val data = Seq(("Alice", "Teacher", 25, 1.11), ("Bob", "Worker", 30, 2.22), ("Charlie", "Officer", 35, 3.33))
      
      val df = spark.createDataFrame(data).toDF("name", "job", "age", "income")
      df.show()
      
      df.write.format("com.ultipa.spark.DataSource")
        .option("hosts","192.168.1.56:63940,192.168.1.57:63940,192.168.1.58:63940")
        .option("auth.username","root")
        .option("auth.password","root")
        .option("graph","Test")
        .option("nodes", "Person")
        .option("nodes.id", "name")
        .save()
      

      Write by Edge Schema

      Example: Write a DataFrame to the RelatesTo edges in the graphset Test

      import org.apache.spark.sql.{SaveMode, SparkSession}
      
      val spark = SparkSession.builder().getOrCreate()
      
      val data = Seq(("Alice", "Bob", "couple"), ("Bob", "Charlie", "couple"), ("Charlie", "Alice", "friend"))
      
      val df = spark.createDataFrame(data).toDF("from", "to", "type")
      df.show()
      
      df.write.format("com.ultipa.spark.DataSource")
        .option("hosts","192.168.1.56:63940,192.168.1.57:63940,192.168.1.58:63940")
        .option("auth.username","root")
        .option("auth.password","root")
        .option("graph","Test")
        .option("edges", "RelatesTo")
        .option("edges.from", "from")
        .option("edges.to", "to")
        .save()
      

      Configurations

      Options

      In the Spark API, both the DataFrameReader and DataFrameWriter classes contain the option() method, which you can use to specify options for read and write operation.

      Below are all the options supported in Ultipa Spark Connector:

      General Options

      Option Key
      Default
      Description
      Optional
      hosts IP address(es) of the Ultipa server or cluster (comma-separated), or the host URL (excluding "https://" or "http://") No
      auth.username Username of the host No
      auth.password Password of the above user No
      graph default Name of the graphset you want to connect Yes
      connection.timeout 15 Timeout threshold for requests (in seconds) Yes
      connection.connect.timeout 2000 Timeout threshold for connection (in milliseconds); each host will be attempted 3 times by default Yes
      connection.heartbeat 10000 Heartbeat milliseconds for all instances, set 0 to turn off heartbeat Yes
      connection.max.recv.size 41943040 Maximum bytes of the received data Yes

      Read Options

      Option Key
      Default
      Description
      Optional
      nodes Name of a node schema Yes
      edges Name of an edge schema Yes
      query UQL query statement to read data Yes

      Write Options

      Option Key
      Default
      Description
      Optional
      nodes Name of a node schema; if the specified schema does not exist, it will be created during write Yes
      nodes.id Name of the column in the DataFrame to be as the _id of the nodes Yes
      edges Name of an edge schema; if the specified schema does not exist, it will be created during write Yes
      edges.from Name of the column in the DataFrame to be as the _from of the edges Yes
      edges.to Name of the column in the DataFrame to be as the _to of the edges Yes

      Global Configurations

      You can set the options for each connection, or specify global configurations in the Spark Session to avoid retyping the options each time. To do so, you can prepend the option key with ultipa. in the config() method.

      Example: set global configurations for options hosts, auth.username, auth.password, graph and connection.timeout

      import org.apache.spark.sql.{SaveMode, SparkSession}
      
      val spark = SparkSession.builder()
        .config("ultipa.hosts", "192.168.1.56:63940,192.168.1.57:63940,192.168.1.58:63940")
        .config("ultipa.auth.username","root")
        .config("ultipa.auth.password","root")
        .config("ultipa.graph", "Test")
        .config("ultipa.connection.timeout", 600)
        .getOrCreate()
      
      val dfPerson = spark.read.format("com.ultipa.spark.DataSource")
        .option("nodes", "Person")
        .load()
      

      Data Type Conversion

      Ultipa Property Type Spark Data Type
      _id, _from, _to StringType
      _uuid, _from_uuid, _to_uuid LongType
      int32 IntegerType
      uint32 LongType
      int64 LongType
      uint64 StringType
      float FloatType
      double DoubleType
      decimal
      string StringType
      text
      datetime TimestampType
      timestamp TimestampType
      point
      blob BinaryType
      list
      set
      ignore NullType
      UNSET NullType
      _ StringType
      Please complete the following information to download this book
      *
      公司名称不能为空
      *
      公司邮箱必须填写
      *
      你的名字必须填写
      *
      你的电话必须填写